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Mathematical modeling for policy

• Explicit integration of scientific evidence on the many 
factors relevant to a decision.

• Evaluation of interventions (counterfactuals, what if)

• Estimate key parameters and outcomes that often 
are unobserved (transmission & fitness).

• By identifying the assumptions and uncertainties to 
which decision making is most sensitive, models can 
help to prioritize further data collection and research.



How do we measure evidence from 
models? 
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US National Action Plan for Combating 
Antibiotic-Resistant Bacteria, 2020-2025



Timeline of FDA policies and guidance on antimicrobial 
resistance for food animals

*VFD= Veterinary feed directive, MIA= Medically important antimicrobials. MIAD= 
Medically important animal drugs

Figure by Manuel Jara, 2022



Antimicrobial use in food animals- FDA sales data



Number and proportion of isolates from the National Antimicrobial Monitoring 
System collected from the pre-implementation (2012-2015) and post-
implementation period (2016-2019) sorted by animal and bacterial host.

Chandra Deb et al., in review



• For all animal-bacteria groups, significant decreases in 
MIC during post-implementation were less than 1 fold 
minimum inhibitory concentration dilution. 

• Changes not consistent across outcomes (% resistance, 
MIC, resistant genes)

• What effect size? How long?

• Isolate a single intervention from other effects is difficult



Long-term effects of antimicrobial stewardship 
interventions: 

Antimicrobial resistance reversion?

• Fitness cost of resistance

• Compensatory adaptation

• Co-selection (other antimicrobials, biocides, heavy metals…)

• Presence of susceptible genotypes
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Current Landscape of AMR Research

Figure by Manuel Jara (2022)



Campylobacter coli 
from Swine Farms

• Prior research on AMR in 
conventional & antibiotic-free (ABF) 
production systems

• Samples collected from NC pig 
cohorts & their environment from 
birth till death

• Samples cultured for 
Campylobacter spp. 

• 2900 C. coli isolates 
phenotypically characterized 

• 1300 C. coli isolates 
sequenced using Illumina 
MiSeq



Fitness Effects of AMR in Experimental vs Natural C. coli Populations

• Our phenotype data do not support 
broadly accepted fitness effects

• 23S rRNA A2075G mutation
• gyrA T86I mutation

• Experimental studies have highly 
controlled exposures, in general

• Natural bacteria exposed to diverse, 
uncontrolled factors that can 
influence relative fitness effects of a 
genotype



Phylodynamic Approaches and
Multi-Type Birth-Death Models

• Phylodynamics = integration of 
phylogenetic & epidemiological data to infer 
evolutionary processes (e.g. fitness)

• Birth-death models estimate birth rates of 
lineages based on branching rates in 
phylogeny

• Multi-type birth death models allow birth 
rate estimates of lineage to differ based on 
“type” (e.g. resistance or susceptibility)

Figure from Kühnert et al. 2018



Analytical Stage 1: Bioinformatic Analysis

1. Downloaded FASTQ files for all study isolates

2. de novo assembled genomes with Shovill 
implementation of SPAdes

3. Annotated genomes with Prokka

4. Screened for resistance genes using AMRFinderPlus

5. Ascertained sequence quality scores using Quast

6. Identified RM5611 as best reference in RefSeq 
based on Mash distances

7. Produced multiple sequence alignment against 
reference and cleaned alignment using Snippy



Analytical Stage 2: Phylogenetic Analysis

16

Reconstruct 
Maximum 
Likelihood 
Phylogeny

(RAxML-NG)

Root-to-Tip 
Regression 
(TempEst) 

Root & Date 
Phylogeny 

(LSD2)

Whole-
Genome 

SNP 
Alignment

(snippy)

Temporal 
Signal +

Molecular 
Clock Rate

Dated & 
rooted ML 
phylogeny

Identify & Mask 
Recombinant 

Sites in Alignment 
(Gubbins)



Analytical Stage 3: Phylodynamic Analysis

1. Used dated & rooted ML Phylogeny as input

2. Reconstructed ancestral states using PastML

3. Estimated birth rate using likelihood-based MTBD model framework
• Consistent Death Rate = 1.267
• Consistent Sampling Proportion = 0.1164

4. Inferred relative fitness for each feature & estimated 95% credible intervals
• >1.0: advantageous fitness effect
• =1.0: neutral fitness effect
• <1.0: deleterious fitness effect





Fitness Effects of 
23S rRNA & 
gyrA Mutations 
among C. coli 
from 
Conventional 
Farms

Model with all main effects plus 
two interaction terms: 
- gyrA T86I X Conventional 
- 23S rRNA A2075G X 

Conventional



Fitness Effects of 
23S rRNA & gyrA 
Mutations among 
C. coli from ABF 
Farms 
(alternative view)

Model with all main effects plus two 
interaction terms: 

- gyrA T86I X ABF 
- 23S rRNA A2075G X ABF



Non-Neutral 
Fitness Effects 
also Observed 
for acr3, aad9 & 
sat4 
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Feature Resistance 
Conferred 

MLE
(95% CI) Freq.

acr3 arsenic 1.033
(1.012, 1.050) 0.116

aad9 aminoglycoside 1.026
(1.012, 1.050) 0.016

sat4 aminoglycoside 0.992
(0.974, 0.993) 0.019



Co-selection? 
Multi-Layered Gaussian Chain Graph 
Framework for AMR Epidemiology





• G x E = P
• Fitness advantage for gyrA T86I mostly attributable to beneficial 

effect among C. coli from conventional farms

• Slight advantageous fitness effect for 23S rRNA A2075G in C. coli 
isolates from ABF farms

• Some resistant features have neutral fitness effect

• Bottom-up approach to infer effectiveness of 
antibiotic stewardship interventions? 
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