STRATEGIC INTERACTIONS BETWEEN STAKEHOLDERS IN OH-AMR

Guillaume Lhermie^{1,2}, Lisa Vors², Lea Vitorino², Mehdi Berrada^{,2}

uillaume.lhermie@ucalgary.ca

1 University of Calgary, School of Public Policy 2 National Veterinary school of Toulouse, CIRAD

THE SCHOOL OF PUBLIC POLICY

Background and objectives

- Social-ecological system approach for conservation of bacteria susceptibility
 - Common pool resources
 - Actors

Mc Ginnis & Ostrom, 2014

Erasmus & Gilson, 2008

Measuring interactions in OH-AMR

- To evaluate the state of the OH-AMR policy agenda?
- To support policy implementation in OH-AMR

1. Evaluating the state of OH-AMR policy agenda

- What's in research?
- What's in the public sphere?

Walt & Gilson, 1994

Policy triangle

THE SIMPSON CENTRE.

Main information

Most relevant sources

Collaboration Network - Authors

Institutions

Affiliations

univ peruana caveta

swiss trop and publ hlth inst

Corresponding Author's Countries

Countries' Collaboration World Map

Tree-field Plot

Titles

Affiliations

Author's Keywords

Approach

Media scraping

Vitorino et al., forthcoming

The first Tool : The Gdelt Project

The Gdelt project is a data base of all articles published and similar publications in the world since 1979.

Principal sources : online newspapers, news websites, blogs, news agencies, government organizations, international organizations, NGOs.

Preliminary findings & discussion

✤ To be confirmed

- OH-AMR is still siloed
- Not a public problem

Hypotheses

- Not novel enough
- Not severe enough
- Who are the champions?

...Il Orange F < 15:08

Glasgow Warriors 19-43 Toulon: French side power to EPCR Challenge Cup

By Tom English BBC Scotland at the Aviva Stadium

19 May 2023

The great Sergio Parisse scored one of bbc.com

La Rochelle's Romain Sazy, head coach Ronan O'Gara and Gregory Alldritt with the Heineken Champions Cup trophy after La Rochelle beat Leinster at Aviva Stadium, Dublin, on Saturday. Photograph: Laszlo Geczo/Inpho

2. Approaches to support policy change

Rational approaches

- Multicriteria decision analysis
- Game theory

Multicriteria decision analysis

Marechal, 2016 http://www.promethee-gaia.net

Set of methods used as decision support tool

- Support decision-making process by taking into consideration multiple criteria simultaneously
- Participatory approach
- Ability to set individual preferences for each stakeholder in the weighting criteria process
- Advantage : quantitative and qualitative data in the analysis.

Evaluating the societal acceptability of reducing AMU : a pilot study in the French dairy sector

1) Define problem and identify stakeholders

2) Identify key decision issues and define indicators

3) Identify interventions or strategies to compare

- 1. Current AMU scenario
- 2. Prohibition scenario (antibiotic free)
- 3.Subsidies to reduce antibiotic use by 25%
- 4. Preventive and metaphylaxis prohibition

Manriquez et al., 2022

Calibration

Literature review

Dimensions	Indicators	Current AMU Scenario	Antibiotic prohibition	Subsidies to reduce antibiotic use by 25%	Preventive and metaphylaxis prohibition	
Economic	PC: production cost	494€/1000L	684€/1000L	617,5 €/ 1000 L	667 €/ 1000 L	
	FR: farmers revenues brut	334€/1000L	473 €/ 1000 L	417.5 €/ 1000 L	451 €/ 1000 L)	
	PCU: price of cull cow	2.4 €/ kg net	2.64 €/ kg net	2.4 €/ kg net	2.4 €/ kg net	
	PCA: price of 15-day calf	115€	126, 5€ 115€		115€	
	PP: product price	0.78€/L	1,85 €/L	0,97 €/L	1,05 €/L	
Environment	ALEA	0.273	0	0.204	0.177	
	FA: fraction attributable	4%	0	3%	2.6%	
Social	MR: mortality rate	3.8%	4.8%	4.04%	4.1%	
	CR: culling rate	21.3%	50.5%	28.6%	31.5%	
Political	PN: regulatory framework	Moderate	Very high	Moderate	High	
	PI: policies investments	High	High	Very high	Moderate	

Weighing and ranking

Each stakeholder individually

	Indicators	Weights						
		S1	S2	S3	S4	S 5	S6	
EcoD	PC	8	2	0,5	15	10	7	
	FR	20	4	0,5	20	10	7	
	PCU	10	2	0,5	15	10	2	
	PCA	8	2	0,5	15	10	2	
	PP	5	4	8	10	10	6	
	Total	51	14	10	75	50	24	
EnvD	ALEA	15	25	10	5	10	17	
	FA	15	25	30	5	10	17	
	Total	30	50	40	10	20	34	
SocD	MR	3	6	15	5	10	8	
	CR	2	6	10	5	10	8	
	Total	5	12	25	10	20	16	
PolD	PN	12	12	10	2,5	5	13	
	PI	2	12	15	2,5	5	13	
	Total	14	24	25	5	10	26	
	TOTAL	100	100	100	100	100	100	
	THE SCHOOL							

Challenges

- Defining the indicators
- Valuing the indicators (inc. weighing)
- Closely ranked scenarios can exhibit high differences

Game theory principles

Game: defined by three parameters:

- a set of players (or agents)
- their action sets (or strategy sets)
- their payment functions (or utility functions)

Rational players

- Maximize their utilities
- Know that the others, too

Different forms of game

- Cooperative/non cooperative
- Symmetric/asymmetric
- Perfect/imperfect information

Game theory: application 1

- Cooperative vs non cooperative
- 2 pay-off criteria
 - Profitability : annual cost savings (ACS) and the annualized crossplant piping cost
 - Sustainability : overall reduction of fresh water and wastewater flowrates upon the implementation of IPWI.
- An IPWI scheme with a lower overall water flowrates will achieve higher sustainability payoff as it is more environmental friendly

Game theory approach to the analysis of inter-plant water integration in an eco-industrial park

Irene Mei Leng Chew^a, Raymond R. Tan^b, Dominic Chwan Yee Foo^{a,*}, Anthony Shun Fung Chiu^b

THE SCHOOL

Game theory: application 2

Antibiotic stewardship from a decision-making, behavioral economics, and incentive design perspective

Brendan Bettinger^a, James C. Benneyan^{b,*}, Tannaz Mahootchi^c

Fig. 7. Impact of an antibiotic use tax on utility for healthcare system H1 as a function of prescribing threshold $s_{\rm H1}$.

Game theory: application 3

Players: insects, farmers, manufacturers, regulators

Available online at www.sciencedirect.com

ScienceDirect

Joel S Brown^{1,2} and Kateřina Staňková³

- Evolutionary game for insects
- Strategic game for human beings
- Ecologically enlightened management
- Evolutionary enlightened management

ELSEVIER

THOUGHT

insect pests

Challenges

- Oversimplification
- Need for high resolution data
- Theory is better at explaining outcomes when arguments are settled
- Uncertainty and lack of institutionalization

Summary

- Quantitative approaches for
 - Modeling AMR policies
 - Monitoring AMR discussions

Many tools have been developed and used to study other challenges

- AMR is a little bit more complex (indicators of resistance, bacteria evolution, multiple AMs, multiple AM users, local and global governance...)
- Does AMR require a OH approach?

Acknowledgments

Team Organizing committee

Questions?

guillaume.lhermie@ucalgary.ca

THE SCHOOL OF PUBLIC POLICY

FOOD & AGRICULTURAL POLICY. <u>simpsoncentre.ca</u>