Understanding host-parasite interactions in malaria - Alex Rowe

The main focus of the Alex Rowe's lab in the School of Biological Sciences is understanding the malaria parasite properties (virulence factors) and human genetic factors (malaria susceptibility genes) that contribute to life-threatening malaria.

The lab is studying three major types of host-parasite interaction: rosetting of infected red cells with uninfected red cells; adhesion of infected red cells to Human Brain Endothelial Cells (HBEC-binding); and platelet-mediated clumping of infected red cells.

Rosetting is a parasite adhesion phenotype strongly associated with life-threatening malaria in African children.  We aim to understand the molecular mechanisms of rosette formation in order to develop rosette-inhibiting vaccines or drugs. In particular, we are studying the role of var genes encoding the infected erythrocyte variant surface protein PfEMP1 in rosetting, and the potential for interventions against PfEMP1 to inhibit rosetting.

Recently, we have also begun to focus on HBEC-binding as an in vitro model for cerebral malaria, investigating the role of PfEMP1 variants as parasite adhesion molecules responsible for HBEC-binding, and the potential for anti-PfEMP1 drugs and vaccines to treat or prevent cerebral malaria.

On the host side, we continue to study the red blood cell complement regulatory protein Complement Receptor One that plays a crucial role in rosette formation, and to investigate novel host cell receptors.  We are also investigating the role of human IgM natural antibodies in malaria parasite adhesion.

In all our projects we aim to combine detailed in vitro investigation of laboratory culture-adapted parasite strains with studies on fresh clinical isolates from malaria patients in sub-Saharan Africa, in order to establish the relevance of our findings to malaria in the real world.

Read more about Alex Rowe's research

HTML